
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Combinatorial Analysis and Recursive Algorithm for

Solving the Countdown Numbers Game

Raymond Jonathan Dwi Putra Julianto - 13524059

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: annayuliati69@gmail.com , 13524059@std.stei.itb.ac.id

Abstract— The Countdown Numbers Game is a mathematical

puzzle that challenges players to combine a set of given integers

using basic arithmetic operations (+, −, ×, ÷, ()) to reach a specific

target number. This game popularized by the British television

show “Countdown,” that presents a rich of combination and step

to get the target number. This paper analyzes the mathematical

structure of the game using combinatorics to model number

combinations and implements a recursive algorithm to explore all

valid expression trees that could lead to a solution. The result

highlights the effectiveness of combining discrete mathematics

concepts with computational search methods in solving

arithmetic-based puzzles.

 Keywords—countdown numbers game, combinatorics,

recursive algorithm, arithmetic puzzle,

I. INTRODUCTION

Number games are among the most intriguing and
intellectually stimulating forms of entertainment in the world.
These games not only provide fun and enjoyment for many
people, but they also serve as effective exercises to keep the
brain active and sharp. The Countdown Numbers Game is a
mathematical puzzle game in which the objective is to use a set
of given numbers with basic arithmetic operations to reach a
target number. One possible solution could involve combining
the numbers using addition, subtraction, multiplication, or
division to get as close as possible or exactly reach the target.
This game has been popularized by the British television show
Countdown, which has been airing since 1982 and remains on
the air to this day. In the show, contestants are challenged to
solve number puzzles under time pressure, typically within 30
seconds, adding an element of urgency and excitement to the
game.

Fig. 1 Countdown Show and Example of the Countdown Numbers Game

(source: https://youtu.be/b2VAPADS4N0?si=41v9vd2Nx2Qgoblr)

 This game is simple. There will be six numbers randomly

selected from the following integer list :{1, 1, 2, 2, 3, 3, 4, 4, 5,

5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 25, 50, 75, 100}.The numbers 1

to 10 are referred to as small numbers, and the numbers 25, 50,

75, and 100 are referred to as large numbers. Players may

choose up to a maximum of four large numbers for the game,

meaning that the remaining numbers will be taken from the

small numbers to complete a total of six.

 Once the six numbers are chosen, a random three-digit target

number (usually between 100 and 999) is generated. The goal

of the player is to combine the six selected numbers using basic

arithmetic operations to reach the exact target number or get as

close as possible. The numbers only be used once, and not all

the numbers must be used. In Countdown, participants with an

exact solution will get 10 points. If no one succeeds in doing so,

the contestant with the closest answer gets 7 points if their result

is within 5 of the target number, or 5 points if it is within 10.

 An example of the Countdown Numbers Game from

figure1. the numbers 25, 9, 1, 5, 1, and 7 with a target number

of 142. One solution that can be possible is: (25 × 5) + (9 × 1)

+ (7 + 1) = 142.

II. FUNDAMENTAL THEOREM

A. Combinatorics

Combinatorics is one of the main branches of mathematics
that focuses on counting, arrangement, and selection of elements
from a set based on specific rules, without the need to manually
enumerate all possible outcomes. There are two basic counting
principles in combinatorics, the product rule and the sum rule.

1) Product Rule

When a task can be broken down into two tasks, with n
ways to do the first task and m ways to do the second,
then there is n × m possible ways for the whole task to
happen.

2) Sum rule

When a task can be done in n ways or in m ways, and
the set of n ways does not overlap with the set of m
ways (i.e., they are mutually exclusive), then there are
n + m possible ways for the whole task to happen.

mailto:annayuliati69@gmail.com
mailto:13524059@std.stei.itb.ac.id
https://youtu.be/b2VAPADS4N0?si=41v9vd2Nx2Qgoblr

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 These two basic counting principles are often not sufficient
to solve more complex problems. So, there are some advanced
counting principles techniques that are required.

1) The Subtraction Rule (Inclusion–Exclusion for Two Sets)
This rule is an extends the idea of the sum rule. When a task
can be done in n ways or in m ways and some of the set n
ways does overlap with some of the set m ways, which
means there are some ways on that two set and counting
twice, we can use find possible ways with their union of the
two set with the formula would be:

|n ∪ m| = |n|+|m|−|n ∩ m|

2) Permutation

Permutation is a total arrangement of objects where the

order of the arrangement matters. In other words, different

sequences of the same elements are considered distinct

outcomes. Permutations are used to count the number of

possible ways to arrange elements when the position or

order is important. Permutation can be written P(n,r), where

n is the number of available elements, and r is the number

of arranged elements. The formula for permutations is:

𝑃(𝑛, 𝑟) =
𝑛!

(𝑛 − 𝑟)!

3) Combination

Combination is a total arrangement of objects where the

order of the arrangement does not matter. Unlike

permutations, combinations focus solely on which elements

are chosen, not how they are arranged. As a result, different

orders of the same elements are counted as a single

outcome. Combination can be written as C(n,r) where n is

the total number of elements, and r is the number of

elements to be chosen. The formula for combinations is:

𝐶(𝑛, 𝑟) =
𝑛!

𝑟! (𝑛 − 𝑟)!

4) Combinations with Repetition (star and bars)

Combinations with repetition involve selecting items from

a set where elements can be chosen more than once, and the

order of selection does not matter. This is different from

standard combinations where each element can be used only

once. The formula for combination with repetition is :

𝐶(𝑛 + 𝑘 − 1, 𝑘) = 𝐶(𝑛 + 𝑘 − 1, 𝑛 − 1)

Which n is the number of distinct item types and k is the

number of items to be selected.

We can visualize these combinations using stars to represent

the number of items selected, and bars to represent the

separation between different item types. This method is

known as the stars and bars technique.

Example, Suppose we want to place 9 identical objects into

5 distinct boxes. Each arrangement of stars and bars such as:

∗∗∗ |∗| ∗∗∗ | | ∗∗

∗∗ |∗| ∗∗∗ | ∗ | ∗∗

∗∗∗ |∗| ∗ | ∗ | ∗∗∗

represents a different way to distribute the 9 objects. Since

there are 9 stars and 4 bars (for 5 boxes), the total number

of such combinations is:

𝐶(5 + 9 − 1,9 − 1) = 𝐶(13,9) = 715 𝑤𝑎𝑦𝑠

B. Countdown Numbers Game

Countdown numbers game is the mathematical puzzle from

Britain’s oldest game show with the gameplay is arranged in 6

numbers with basic operation to get the numbers target. We can

use this game just to play for fun or even for competition.

In countdown numbers game, there are 25 numbers from

this integer list :{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,

10, 10, 25, 50, 75, 100} which the number 1 to 10 is called small

numbers and the number 25, 50, 75, and 100 is called large

numbers. The target, often called the “CECIL”, will display the

target numbers between 100 to 999 from the 6 numbers that

have been chosen.

The rules of play of countdown numbers game is,

1) One of the players requests the number of large

numbers to be used in the game with the maximum of

four. The moderator then randomly selects that

amount of large and the remaining slots are filled with

randomly chosen small numbers.

2) Players are allowed to use basic arithmetic operators,

such as addition (+), subtraction (-), multiplication (+),

division (÷), and parentheses (()). These operators can

be used more than once as needed. However, when

using the division operator, the result must be a whole

number.

3) Each number can be used only once, and not all six

numbers are required to be used in forming the

solution.

4) The game will be played within a 1-minute time limit,

and the player with the exact number target will earn

10 points. If no one succeeds in doing so, the

contestant with the closest answer gets 7 points if their

result is within 5 of the target number, or 5 points if it

is within 10.

The target numbers are randomly generated by “CECIL”

using a set of six numbers. 1226 sets can solve any problem,

ranging from 100 to 999. We can know it by the number of large

numbers.

TABLE I. PERFECT SOLUTION SETS BY NUMBER OF LARGE NUMBERS

#Big Count

0 5

1 614

2 603

3 4

4 0
a. #Big refers to how many large numbers use in the sets

From table I, sets with one large number and two large

numbers dominate the perfect solution, and sets with zero,

three, and four large numbers have least the perfect solution.

There is no perfect solution for set with four large numbers.

This happens because including too many large numbers limits

the flexibility of operations using small values, making it harder

to form all target numbers between 100 and 999.

In a set of numbers, not all numbers contribute equally to

the probability of finding a solution. Some numbers, due to their

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

mathematical properties, are more flexible and strategic for use

in arithmetic operations than others.

TABLE II. AMOUNT REACHABLE BY SINGLE SMALL NUMBER

Game Set Contains Amount Reachable

1 775

2 804

3 819

4 813

5 821

6 824

7 842

8 836

9 842

10 835
b. Game Set Contains refers to the specific small number that is guaranteed to be included in a game set,

while Amount Reachable refers to the total amount of target numbers that can be solved.

Table II shows the number of reachable targets when a

game set is guaranteed to contain a specific small number. For

example, if our set of numbers includes 3, we can expect to

reach 819 different target numbers. Single number 1 is the least

useful for reaching targets, single number 7 and 9 are the most

effective small numbers for approaching target numbers.

TABLE III. AMOUNT REACHABLE BY DOUBLE SMALL NUMBER

Game Set Contains Amount Reachable

1 655

2 738

3 775

4 773

5 780

6 798

7 828

8 818

9 831

10 808
c. Game Set Contains refers to the specific small number that is guaranteed to be included in a game set,

while Amount Reachable refers to the total amount of target numbers that can be solved.

Table III explains the number of reachable targets when the

set contains a pair of identical small numbers. If our set of

numbers has a pair of 3, we can expect to reach 775 target

numbers. Double numbers 1 are the least effective for reaching

targets, otherwise double numbers 7 and 9 are the most effective

pairs for approaching target numbers.

 Based on these two tables, the numbers 7 and 9 are highly

effective for reaching many targets. This is likely due to their

properties, such as being relatively large prime numbers within

the set of small numbers, which provides greater flexibility in

calculations.

Fig. 2 Percentage of Game Sets Solving a Given Target

(source: https://datagenetics.com/blog/august32014/index.html)

The target numbers have percentage chance to be solved

with random set numbers. By recording figure 2, we can see

that the target numbers get larger, the percentage of be able

solve gets smaller. This is normally because the big target

numbers need to be multiplication rather than the small target

numbers that can be reached by addition or multiplication small

numbers. Under 316 number targets, the percentage chance to

be solved is above 95%. It is the opportunity to get to know the

set of numbers that are chance solvable. The most difficult to

reach the target number is 947 with the percentage chance is

68.09%, meanwhile the most complicated reach target number

is 961.

III. IMPLEMENTATION

A. Combination Sets of the Six Numbers Choose

There are 6 numbers required to play the Countdown
Numbers Game, which means there are many possible
combinations of number selections. The six numbers can be
filled with a random mix of large numbers and duplicated small
numbers, since small numbers from 1 to 10 appear twice each.

For example, if a player chooses 2 large numbers for the start
game, then 4 small numbers left to complete the 6-numbers set.
Since small numbers can appear more than once, several
variations are possible in how these small numbers are selected.
Let Li represent the chosen large number and Si represent the
chosen small number. There are multiple ways the small number
portion can be formed. For instance:

1) Combination 1 : L1, L2, S1,S1,S2,S2
The small number set contains two duplicated values. The
total number of such combinations is: 𝐶(4,2) × 𝐶(10,2) =
270.

2) Combination 2 : L1, L2, S1,S1,S2,S3

The small number set contains one duplicated and two
distinct values. The total number of such combinations is:
𝐶(4,2) × 10 × 𝐶(9,2) = 2160.

3) Combination 3 : L1, L2, S1,S2,S3,S4

The small number set contains four completely distinct
values. The total number of such combinations is: 𝐶(4,2) ×
𝐶(10,4) = 1260.

From this illustration, we can get the amount of combination for

2 of large numbers is 270 + 2160 + 1260 = 3690.

We can count the combination of each large number by

using:

𝐶(4, 𝑛) × 𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(6 − 𝑛)

https://datagenetics.com/blog/august32014/index.html

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

which n is the number of large numbers chosen (ranging from

0 to 4), and ValidSmallNumbers (6 − n) represent the number

of valid small-number combinations needed to complete the 6-

number set. The small number combinations are constrained

such that each small number from 1 to 10 can appear at most

twice.

The function ValidSmallNumbers uses bounded multiset

counting to determine the number of valid combinations that

can complete the 6-number set. This method ensures that no

small number is used more than twice, as limited by the

Countdown game rules. The total number of valid small-

number combinations for each possible count of large numbers

is summarized in table below:

TABLE IV. VALIDSMALLNUMBERS(6-N)

Large number (n) k = 6 - n ValidSmallNumbers(k)

0 6 2850

1 5 1452

2 4 615

3 3 210

4 2 55
d. ValidSmallNumbers(k) refers to the number of valid small-number combinations of size k.

From Table IV, we can find the total number of valid

combinations for each possible count of large numbers. When :

• 0 Large Numbers (n = 0)

𝐶(4,0) × 𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(6) = 1 × 2850 = 2850

• 1 Large Numbers (n = 1)

𝐶(4,1) × 𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(5) = 4 × 1420 = 5808

• 2 Large Numbers (n = 2)

𝐶(4,2) × 𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(4) = 6 × 615 = 3690

• 3 Large Numbers (n = 3)

𝐶(4,3) × 𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(3) = 4 × 210 = 840

• 4 Large Numbers (n = 4)

𝐶(4,4) × 𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(2) = 1 × 55 = 55

Adding all of these together, we obtain the total number of

valid 6-number combinations that can be formed in the

Countdown Numbers Game: 2850 + 5808 + 3690 + 840 +

55 = 13243. If the target value is selected randomly, there

are exactly 900 possible target values (ranging from 100 to

999 inclusive). Given that there are 13,243 unique 6-number

sets, the total number of possible game instances is: 900 ×

13243 = 11918700 games.

B. Reachable Numbers from a Given Game Set

A set of six numbers selected according to specific

rules must be combined using basic arithmetic operations in

order to reach a target number between 100 and 999.

Assume a, b, c, d, e, f represents the six chosen integers.

These elements may be paired and operated on sequentially,

generating intermediate results that can bring the total closer

to the target or assist in subsequent operations.

For instance, choosing two values from the set, such

as a and d, and applying an operation (e.g., addition) results

in a new value g = a + d. This newly derived value g is then

introduced into the pool of usable operands and may serve

one of two strategic purposes:

• Be directly combined with another number to

approach the target, or

• Serve as a steppingstone toward a more complex

multi-step construction.

This process continues recursively, where each new result

becomes a candidate for further combination, adhering to

the constraint that each original number can be used at most

once.

 We can estimate the total number of valid arithmetic

expression sequences by stepwise combining two numbers

at a time and applying one of the four basic operations, with

only integer results allowed. The total number of valid

operation trees formed from a six-number set is:

• First operation: 𝐶(6,2) × 4 = 60

• Second operation: 60 × 𝐶(5,2) × 4 = 2400

• Third operation: 2400 × 𝐶(4,2) × 4 = 57600

• Forth operation: 57600 × 𝐶(3,2) × 4 = 691200

• Last operation: 691200 × 𝐶(2,2) × 4 = 2764800

Thus, the total number of valid arithmetic expression

sequences formed from a six-number set is:

60 + 2400 + 57600 + 691200 + 2764800 = 3516060

This value represents the total number of valid expression

trees for a single six-number set. It does not indicate how

many target numbers between 100 and 999 can be reached.

Rather, it defines the maximum number of distinct operation

paths evaluated during brute-force solution attempts in the

Countdown Numbers Game.

C. Algorithm to find the solution Countdown Numbers Game

To find the solution for the Countdown Numbers

Game, the program iterates through all possible

combinations to find a valid solution. The code is structured

into three specific steps to accomplish this.

• Generating a Permutation Tree

A permutation tree is created from the given set of

numbers to efficiently generate all unique orders of

those numbers. The procedure responsible for this step

is generate_permutation_tree

• Finding Solutions from the Permutation Tree

The program iterates through each branch of the

permutation tree to find a possible solution that matches

the target number. The algorithm uses Reverse Polish

Notation (RPN) with a stack and a recursive

backtracking approach to try all operator combinations.

The function used for this process is
recursive_place_operators

• Formatting the Solution Result

A raw solution, once found, is converted into an

expression tree using the Operation class. This

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

allows the solution to be optimized and formatted into

a human-readable string.

Here is the implementation of the code using python language

def solve(arg_input, arg_target):

 """

The main entry point function for the solver.

It initializes the process, calls the

permutation tree generation, starts the

solution search,and prints the final unique

solutions.

 """

class NumberNode:

 """

Defines the data structure for a node within

the permutation tree. Each node represents a

single number in a sequence, and it holds

references to subsequent numbers (children) in

the permutation.

 """

def generate_permutation_tree(input):

 """

Builds the permutation tree data structure from

the provided list of numbers. Its purpose is to

efficiently generate all unique permutations

(orders) of the numbers.

 """

def

recursive_generate_permutation_tree(numbers,

indices, node):

 """

A recursive helper function that does the

actual work of building the branches of the

permutation tree, ensuring no duplicate

permutations are generated.

 """

def place_operators(root):

 """

Kicks off the second major stage: the solution

search. It initializes the evaluation stack and

the RPN record, then calls the recursive

solver.

 """

def recursive_place_operators(node,

num_consumed):

 """

The core recursive solver that uses a

backtracking algorithm. At each step, it tries

either adding a new number to the stack or

applying an operator(+, -, *, /) to the numbers

already on the stack.

 """

class Operation:

 """

 Defines the data structure for a node

within an expression tree. This class is used

to convert a raw RPN solution into a

mathematical expression that can be formatted

and optimized. It holds the value, operator,

children, and flags for optimization (e.g.,

negative, reciprocal).

 """

def sort_children(children):

 """

A helper function to sort the children of an

expression node. This is crucial for ensuring a

consistent, canonical output (e.g., "100 + 50"

instead of "50 + 100").

 """

def compare_operations_less_than(op1, op2):

 """

A helper comparison function that defines the

standard order between expressions, used by the

sorting function.

 """

def contruct_solution_string(ops_record):

 """

The main function for the third stage. It takes

a raw solution record (in RPN format) and

orchestrates the process of converting it into

a final, human-readable string.

 """

def construct_operation_tree(ops_record):

 """

Builds the initial expression tree data

structure from an RPN record.

 """

def recursive_optimize_operation_tree(node):

 """

Simplifies the expression tree by "flattening"

sequential operations (like a+b+c) and

normalizing operators to eliminate duplicates

and unnecessary parentheses.

 """

def

recursive_print_binary_operation_tree(node):

 """

an alternative formatting method that prints

the expression exactly as it was calculated,

including all original parentheses, without

optimization.

 """

def main():

 """

Handles all user interaction, such as asking

for the numbers and the target, and then calls

the main 'solve' function to start the process.

 """

Fig. 3 Function and Class used on the Code (source: writer’s archive)

IV. ANALYSIS

A. Decision Making

 Brute-forcing each possible combination of the number set
is the simplest method available to all players; however, it
requires a significant amount of time and a fair degree of luck to
find a valid solution. There are some strategic, but not exactly
the target number, in every single situation.

1) Pitch and Put Technique

The Pitch and Put technique involve a large number with

another number to get close to the target number, called

pitch, followed by adjusting the number into the target

number by another set number left, called put. This

technique is very common use by the player of countdown

construct efficient solutions from the given numbers. Here

are some examples of the game.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 4 Game Example for Pitch and Put

(source: https://happysoft.org.uk/countdown/numgame.php)

In this game example, we use one large number for the
numbers of set. The set numbers are 75, 9, 7, 5, 2, and 2 with
75 being the largest. The number 75 we can multiply by 9 to
get number 675, which is pretty close we are about 60 away.
We can subtract 675 by 9 multiply 7 to get 612, but because
9 is can only use by one time, we can make correspond to
another equation that same value with 612 it is (75 − 7) ×
9 = 612. After performing the pitch operation, we apply the
put step by adding a number to reach the final target by
addition 6. The number of 6 can be find by 5 + (2 ÷ 2) or
 2 × (5 − 2). The solution of this game example is
((75 − 7) × 9) + 5 + (2 ÷ 2) or ((75 − 7) × 9) + (2 ×
(5 − 2)).

2) Prime Factorizations
This technique attempts to solve the puzzle by expressing the
target number as a product of its prime factors and then
reconstructing these factors using the available set numbers.
It can be difficult because you need to factor the target
number which can the factor of target number is so big or
maybe the target number itself is the prime number. Here are
some examples of prime factorizations:

Fig. 5 Game Example for Prime factorization
(source: https://happysoft.org.uk/countdown/numgame.php)

In this game example, we use one large number for the
numbers of set. The set numbers are 25, 9, 7, 6, 5, and 4. The
target number of this game is 451. By factoring the target,
we find that 451 = 11 × 41. This factor might take time if
player is not easy for factorized. This factor can be got by
addition 5 and 6 to get 11 and addition 25, 9, and 7 to get 41.
So, the solution of this game example is (5 + 6) × (25 +
9 + 7).

This example of a target number may seem conveniently
suited for factorization. But what happens when the next
target number is 452?

Fig. 6 Game Example for Prime factorization
(source: https://happysoft.org.uk/countdown/numgame.php)

In this case, we use the same set of numbers as in the
previous example: 25, 9, 7, 6, 5, 4. However, the new target
number 452 is not as easily factorizable into values that can
be readily constructed from the given set. While 452 can be
factorized as 4 × 113 or 2 × 2 × 113, the number 113 is a
prime that is too large to be built from the available digits in
the set.

Instead, we can look for nearby numbers that possess simpler
and more accessible prime factorizations. One such number
is 448, which factors into 64 × 7. Factor 7 is already present
in the set, and 64 can be composed using the expression 25
+ 9 + (6 × 5). By computing (25 + 9 + (6 × 5)) × 7, we arrive
at 448 and then add the remaining number 4 to reach the
target value. So, the solution of this case is (25 + 9 +
 (6 × 5)) × 7 + 4.

3) Using 7 and 9 for Reachable

We know before that single and double numbers of 7 and 9

are the most effective for approaching target numbers. We

can use this knowledge to form a practical strategy during

the game. Here are some examples of using 7 and 9 for

reachable:

Fig. 7 Game Example for Using 7 and 9 for reachable
(source: https://happysoft.org.uk/countdown/numgame.php)

In this game example, we use one large number for the

numbers of set. The set numbers are 25, 9, 7, 6, 5, and 4.

The target number of this game is 665. The target number

can be factorized by 7, which results in the factor 95. The

factor of 95 can be got by (25 × 4) − 5. So, the solution of

this game example is 7 × ((25 × 4) − 5).

However, this method can be problematic because there is

no guarantee which small numbers will be included in the

set. The situation becomes worse if the number of large

numbers chosen is not one or two, due to the limited number

of reachable targets in those configurations.

https://happysoft.org.uk/countdown/numgame.php
https://happysoft.org.uk/countdown/numgame.php
https://happysoft.org.uk/countdown/numgame.php

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

B. Code Analysis

The implementation of solving the Countdown Numbers

Game will be done by code in python language. The algorithm

implemented is a recursive algorithm with backtracking. This

approach is used to systematically explore all possible

mathematical expressions that can be formed from the given

numbers.

The process begins with the solve function, which

accepts 6 input numbers and a target number. The first crucial

step is to call generate_permutation_tree to generate

all unique sequences (permutations) of these numbers. This

ensures that each sequence of numbers is processed only once,

even if there are duplicate numbers.
Initialization and Permutation Tree Generation

def solve(arg_input, arg_target):

 # ... initialize target ...

 root = generate_permutation_tree(arg_input)

 # ... begin solution search ...

def generate_permutation_tree(input):

 # ... create all unique permutations ...
Fig. 8 Initialization and Permutation Tree Function Call Code

 (source: writer’s archive)

After the permutation tree is created, the core algorithm is
executed by the place_operators function, which then

calls recursive_place_operators. This recursive

function operates using the Reverse Polish Notation (RPN)
method with a stack. At each step, this function attempts one of
two possibilities: either taking a new number from the
permutation to place on the stack, or applying one of the four
arithmetic operators (+, -, *, /) to the top two numbers on the
stack. This process continues until a solution is found or all
possibilities have been exhausted.

def recursive_place_operators(node, num_consumed):

... (stopping condition if solution is found)...

... (recursive step to add a new number) ...

... (recursive step to try all operators) ...

Fig. 9 Recursive Place Operator Code to Find the Solution
 (source: writer’s archive)

For a single set consisting of 6 distinct numbers, the
algorithm must explore all possible valid "operation trees". The
total number of these distinct operation paths that the algorithm
might evaluate for a single permutation of numbers is 3516060.

When a solution is found in its raw RPN format (e.g., [100,
25, '+', 5, '*']), functions contruct_solution_string

and recursive_optimize_operation_tree are called

to convert it into a canonical, simplified, and human-readable
string (e.g., (100 + 25) * 5). This optimization process is
important to ensure that mathematically identical solutions are
displayed in a uniform format.

Here some test cases using the code implementation

Fig. 10 Countdown Number Game with number set 100, 6, 6, 2, 3, 7 and target
number 561 (source: writer’s archive)

Fig. 11 Countdown Number Game with number set 25, 75, 3, 8, 6, 3 and target
number 783 (source: writer’s archive)

V. CONCLUSION

The Countdown Numbers Game is a mathematical puzzle
that can be used for entertaiment or to improve our logical
thinking skills. The game offers immense variety through its
different combinations of six numbers and the target number.
With 11,918,700 possible game instances, a significant portion
3,516,060 are valid and solvable. To find a solution, players can
employ several strategies:

• Pitch and Put Technique: A method where one number
is multiplied by another to get close to the target, and the
result is then adjusted using the remaining numbers.

• Prime Factorization: This strategy involves using the
prime factors of the target number (or a number close to
it) to guide the calculation.

• Using 7 and 9 for Reachable: Statistically, the numbers
7 and 9 are the most effective small numbers for
reaching a target, making them strategic starting points.

 From a computational standpoint, the solution can be found
efficiently using an algorithm that combines a permutation tree
(to handle number order), Reverse Polish Notation (RPN) with
a stack (to manage calculations), and a recursive backtracking
approach to explore all possibilities.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

APPENDIX

Source code for implementing the solution Countdown
Numbers Game program :
https://github.com/Raymond13524059/Countdown-Number-
Game-Solver---13524059---Raymond-Jonathan-Dwi-Putra-
Julianto.git

ACKNOWLEDGMENT

 The author would like to express sincere gratitude to Dr.

Ir. Rinaldi, M.T. and Mr. Arrival Dwi Sentosa, S.Kom., M.T.,

lecturers of the IF1220 Discrete Mathematics course, for

their guidance, encouragement, and support throughout the

semester. Thanks to their support, the author was able to

gain valuable insights and learn many new things throughout

the course. The author is also deeply thankful to family and

friends who have been motivating and supporting.

REFERENCES

[1] R. Munir, “Kombinatorika Bagian 1,” Departemen Informatika, Institut
Teknologi Bandung, 2024. Accessed: 13 June 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-
Kombinatorika-Bagian1-2024.pdf

[2] R. Munir, “Kombinatorika Bagian 2,” Departemen Informatika, Institut
Teknologi Bandung, 2024. Accessed: 13 June 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-
Kombinatorika-Bagian2-2024.pdf

[3] “Countdown numbers game,” dCode. Accessed: 09 June 2025. [Online].
Available: https://www.dcode.fr/countdown-numbers-game#q2

[4] exitexit, “countdown-numbers-solver,” GitHub. Accessed: 09 June 2025.
[Online]. Available: https://github.com/exitexit/countdown-numbers-
solver/tree/main

[5] N. C. C. Browne, “Countdown math game,” DataGenetics, August 3,
2014. Accessed: 17 June 2025. [Online]. Available:
https://datagenetics.com/blog/august32014/index.html

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Raymond Jonathan Dwi Putra Julianto - 13524059

https://github.com/Raymond13524059/Countdown-Number-Game-Solver---13524059---Raymond-Jonathan-Dwi-Putra-Julianto.git
https://github.com/Raymond13524059/Countdown-Number-Game-Solver---13524059---Raymond-Jonathan-Dwi-Putra-Julianto.git
https://github.com/Raymond13524059/Countdown-Number-Game-Solver---13524059---Raymond-Jonathan-Dwi-Putra-Julianto.git
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-Kombinatorika-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-Kombinatorika-Bagian2-2024.pdf
https://www.dcode.fr/countdown-numbers-game#q2
https://github.com/exitexit/countdown-numbers-solver/tree/main
https://github.com/exitexit/countdown-numbers-solver/tree/main
https://datagenetics.com/blog/august32014/index.html

